Approximation of solutions to evolution integrodifferential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds of Solutions of Integrodifferential Equations

and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...

متن کامل

Lyapunov stability solutions of fractional integrodifferential equations

Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.

متن کامل

Approximate Controllability of Fractional Integrodifferential Evolution Equations

This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results ...

متن کامل

Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions

and Applied Analysis 3 The evolution system R t, s is said to be equicontinuous if for all bounded set Q ⊂ X, {s → R t, s x : x ∈ Q} is equicontinuous for t > 0. x ∈ C −q, b , X is said to be a mild solution of the nonlocal problem 1.1 , if x t φ t g x t for t ∈ −q, 0 , and, for t ∈ J , it satisfies the following integral equation: x t R t, 0 [ φ 0 g x 0 ] ∫ t 0 R t, s f ( s, xs, ∫ s 0 K s, r, ...

متن کامل

Exact solutions of (3 +1)-dimensional nonlinear evolution equations

In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis

سال: 1996

ISSN: 1048-9533,1687-2177

DOI: 10.1155/s1048953396000299