Approximation of solutions to evolution integrodifferential equations
نویسندگان
چکیده
منابع مشابه
Bounds of Solutions of Integrodifferential Equations
and Applied Analysis 3 Define a function m t by m t v t ∫ t 0 g s v s ds v t ∫ t 0 g s ds, 2.5 then m 0 v 0 u0, v t ≤ m t , v′ t ≤ f t m t , 2.6 m′ t 2g t v t v′ t ( 1 ∫ t 0 g s ds ) ≤ m t [ 2g t f t ( 1 ∫ t 0 g s ds )] . 2.7 Integrating 2.7 from 0 to t, we have m t ≤ u0 exp (∫ t 0 ( 2g s f s ( 1 ∫ s 0 g σ dσ )) ds ) . 2.8 Using 2.8 in 2.6 , we obtain v′ t ≤ u0f t exp (∫ t 0 ( 2g s f s ( 1 ∫ s ...
متن کاملLyapunov stability solutions of fractional integrodifferential equations
Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.
متن کاملApproximate Controllability of Fractional Integrodifferential Evolution Equations
This paper addresses the issue of approximate controllability for a class of control systemwhich is represented bynonlinear fractional integrodifferential equations with nonlocal conditions. By using semigroup theory, p-mean continuity and fractional calculations, a set of sufficient conditions, are formulated and proved for the nonlinear fractional control systems. More precisely, the results ...
متن کاملExistence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions
and Applied Analysis 3 The evolution system R t, s is said to be equicontinuous if for all bounded set Q ⊂ X, {s → R t, s x : x ∈ Q} is equicontinuous for t > 0. x ∈ C −q, b , X is said to be a mild solution of the nonlocal problem 1.1 , if x t φ t g x t for t ∈ −q, 0 , and, for t ∈ J , it satisfies the following integral equation: x t R t, 0 [ φ 0 g x 0 ] ∫ t 0 R t, s f ( s, xs, ∫ s 0 K s, r, ...
متن کاملExact solutions of (3 +1)-dimensional nonlinear evolution equations
In this paper, the kudryashov method has been used for finding the general exact solutions of nonlinear evolution equations that namely the (3 + 1)-dimensional Jimbo-Miwa equation and the (3 + 1)-dimensional potential YTSF equation, when the simplest equation is the equation of Riccati.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis
سال: 1996
ISSN: 1048-9533,1687-2177
DOI: 10.1155/s1048953396000299